Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 
Journal of Obstrectic Anaesthesia and Critical Care
Search articles
Home Print this page Email this page Small font size Default font size Increase font size Users Online: 175
Year : 2012  |  Volume : 2  |  Issue : 1  |  Page : 23-30

The Baska Mask® -A new concept in Self-sealing membrane cuff extraglottic airway devices, using a sump and two gastric drains: A critical evaluation

1 Department of Anaesthesiology, Maastricht University Medical Centre, The Netherlands, Netherlands
2 Department of Anaesthesia, University of New South Wales, Prince of Wales and Sydney Children's Hospital, Sydney, New South Wales, Australia

Correspondence Address:
Stephen Gatt
Division of Anaesthesia and Intensive Care, Prince of Wales Hospital, Edmund Blacket Bldg, East Wing, cnr. High and Avoca Str, Randwick, NSW 2031
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/2249-4472.99313

Rights and Permissions

Background: In this study, we evaluated the performance of the Baska Mask® , a new extraglottic airway device (EAD) for use in anesthesia in adult patients undergoing a variety of surgical interventions. Materials and Methods: The self-recoiling membrane distally open cuff silicone mask consists of an anatomically curved airway tube with: (1) a bite block over the full length of the airway; (2) a self-sealing membranous variable-pressure cuff which adjusts to the contours of the mouth and pharynx; (3) a large sump cavity with two aspiratable gastric drain tubes; together with a number of special features such as (4) a tab for manually curving the mask to ease insertion; and (5) a suction elbow integral to one port with a second port acting as a free air flow access. The cuff of the Baska Mask® is not an inflatable balloon, but a membrane which inflates on every breath during intermittent positive pressure ventilation (IPPV) to achieve a superior seal when opposed to the larynx. An increase in IPPV pressure increases the oropharyngeal seal. With existing extraglottic airway devices, an increase in IPPV merely increases the leak. Results: Fifty patients with American Society of Anesthesiologists (ASA) physical status I-III were enrolled. We evaluated the "first attempt" and "overall insertion" success rates, insertion time, ease of insertion and removal of the device, oropharyngeal leak pressure, and anatomical position at fiberoptic view. The "first attempt" success rate was high (88%) and "overall insertion" success rates was considered "easy" to "very easy" by the operators in 92% of patients. Removal of the device was considered easy in all cases. The oropharyngeal leak pressure was above 30 cm H 2 O in all patients and the maximum of 40 cm H 2 O was achieved in 82% of the patients. In two patients, no adequate capnogram was obtained, so a smaller size mask was inserted with correction to adequate function. At fiberoptic evaluation of the anatomical position of the masks, the vocal cords could be seen, except in six patients (12%), where only the epiglottis could be visualized. Conclusion: The new EAD Baska Mask® has many novel features which should improve safety when used in both spontaneously breathing and IPPV anesthesia.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded2507    
    Comments [Add]    
    Cited by others 11    

Recommend this journal